Evaluation of the Antifungal Effect of Green Synthesized Metal Oxide Nanoparticles Against Plant Pathogenic Rhizoctonia Species

Authors

  • H. K. S. Madusanka Department of Agricultural and Plantation Engineering, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka https://orcid.org/0009-0003-7860-3119
  • A. G. B. Aruggoda Department of Agricultural and Plantation Engineering, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
  • J. A. S. Chathurika Department of Urban Bio-resources, University of Sri Jayawardanapura, Ganagodawila, Nugegoda, Sri Lanka
  • S. R. Weerakoon Department of Botany, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka

DOI:

https://doi.org/10.54536/ajlsi.v3i2.4281

Keywords:

Antifungal Activity, Green-Synthesized Nanoparticles, Poisoned Food Technique, Rhizoctonia Species

Abstract

The current study successfully synthesized zinc oxide (ZnO), copper oxide (CuO), and iron oxide (FeO) nanoparticles (NPs) using cost-effective and environmentally friendly procedures. The synthesized NPs were characterized by UV-Vis spectroscopy and SEM analysis. UV-Vis spectroscopy revealed characteristic absorption peaks at 356 nm for ZnO NPs, confirming their synthesis. SEM analysis showed a heterogeneous distribution of nanoparticle sizes, with ZnO NPs averaging 81 nm, CuO NPs averaging 108 nm, and FeO NPs averaging 82 nm. The antifungal activity of the synthesized nanoparticles was evaluated at various concentrations using the poisoned food technique. The results indicated a dose-dependent inhibition of mycelial growth by ZnO and CuO NPs, with higher concentrations (500 and 1000 mg/L) showing significant inhibition compared to untreated Rhizoctonia species. Specifically, CuO NPs exhibited mycelial growth inhibition percentages of 70.64% and 73.43% at 500 and 1000 mg/L, respectively, while ZnO NPs showed inhibition percentages of 78.38% and 80.94% at the same concentrations. Statistical analysis using one-way ANOVA revealed significant differences among the treatment groups (p < 0.001). In contrast, FeO NPs did not exhibit a dose-dependent inhibition of mycelial growth but showed a minor, statistically insignificant promotion. Among the tested NPs, CuO NPs at 1000 mg/L achieved the highest inhibition, followed by ZnO NPs. The observed variations in mycelial inhibition by different nanoparticles at various concentrations underscore the complexity of nanoparticle-pathogen interactions and highlight the need for further research to optimize their antifungal efficacy.

Downloads

Download data is not yet available.

References

Aigbe, U. O., & Osibote, O. A. (2024). Green Synthesis of Metal Oxide Nanoparticles, and Their Various ApAigbe, U. O., & Osibote, O. A. (2024). Green Synthesis of Metal Oxide Nanoparticles, and Their Various Applications. Journal of Hazardous Materials Advances, 13, 100401–100401. https://doi.org/10.1016/j.hazadv.2024.100401

Ali, M., Haroon, U., Khizar, M., Chaudhary, H. J., & Munis, M. F. H. (2020). Facile single step preparations of phyto-nanoparticles of iron in Calotropis procera leaf extract to evaluate their antifungal potential against Alternaria alternata. Current Plant Biology, 23, 100157. https://doi.org/10.1016/j.cpb.2020.100157

Ali, M., Wang, X., Haroon, U., Chaudhary, H. J., Kamal, A., Ali, Q., Saleem, M. H., Usman, K., Alatawi, A., Ali, S., & Hussain Munis, M. F. (2022). Antifungal activity of Zinc nitrate derived nano Zno fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicology and Environmental Safety, 233, 113311. https://doi.org/10.1016/j.ecoenv.2022.113311

Alyamani, A. A., Albukhaty, S., Aloufi, S., AlMalki, F. A., Al-Karagoly, H., & Sulaiman, G. M. (2021). Green Fabrication of Zinc Oxide Nanoparticles Using Phlomis Leaf Extract: Characterization and In Vitro Evaluation of Cytotoxicity and Antibacterial Properties. Molecules, 26(20), 6140. https://doi.org/10.3390/molecules26206140

Andrade-Zavaleta, K., Chacon-Laiza, Y., Asmat-Campos, D., & Raquel-Checca, N. (2022). Green Synthesis of Superparamagnetic Iron Oxide Nanoparticles with Eucalyptus globulus Extract and Their Application in the Removal of Heavy Metals from Agricultural Soil. Molecules, 27(4), 1367. https://doi.org/10.3390/molecules27041367

Saloki, A., & Daharwal, S. J. (2023). Green synthesis of copper oxide nanoparticle from plant extract and its antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research, 16(7), 172–176. https://doi.org/10.22159/ajpcr.2023.v16i7.47122

Bayat, M., Zargar, M., Chudinova, E., Astarkhanova, T., & Pakina, E. (2021). In vitro evaluation of antibacterial and antifungal activity of biogenic silver and copper nanoparticles: The first report of applying biogenic nanoparticles against Pilidium concavum and Pestalotia sp. fungi. Molecules, 26(17), 5402. https://doi.org/10.3390/molecules26175402

Chaube, H. S., & Pundhir, V. S. (2005). Crop diseases and their management. PHI Learning Pvt. Ltd. https://shorturl.at/btxtU

Chowdhury, A. R., Kumar, R., Mahanty, A., Mukherjee, K., Kumar, S., Tribhuvan, K. U., Sheel, R., Lenka, S., Singh, B. K., Chattopadhyay, C., Sharma, T. R., Bhadana, V. P., & Sarkar, B. (2019). Inhibitory role of copper and silver nanocomposite on important bacterial and fungal pathogens in rice (Oryza sativa). Scientific Reports, 14(1), 1779. https://doi.org/10.1038/s41598-023-49918-0

Dehghani, M., & Ghadam, P. (2023). Green synthesis of ZnO-NPs by Juglans regia green husk aqueous extract. https://doi.org/10.3390/iocn2023-14444

Durgeshlal, C., Sahroj Khan, M., Prabhat, S. A., & Aaditya Prasad, Y. (2019). Antifungal Activity of Three Different Ethanolic Extract against Isolates from Diseased Rice Plant. Journal of Analytical Techniques and Research, 01(01). https://doi.org/10.26502/jatri.007

Dutta, P., Kumari, A., Madhusmita Mahanta, Gunadhya Kr Upamanya, Punabati Heisnam, Sarodee Borua, Pranjal Kr Kaman, Awdhesh Kumar Mishra, Mallik, M., Gomathy Muthukrishnan, Sabarinathan, K. G., Krishti Rekha Puzari, & Dumpapenchala Vijayreddy. (2023). Nanotechnological approaches for management of soil-borne plant pathogens. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1136233

Fetyan, N. A. H., Essa, T. A., Salem, T. M., Taha, A. A., Elgobashy, S. F., Tharwat, N. A., & Elsakhawy, T. A. M. R. D. (2024). Promising eco-friendly nanoparticles for managing bottom rot disease in lettuce (Lactuca sativa var. longifolia). Microbiology Research, 15(1), 14. https://doi.org/10.3390/microbiolres15010014

Foldbjerg, R., Jiang, X., Miclăuş, T., Chen, C., Autrup, H., & Beer, C. (2015). Silver nanoparticles – wolves in sheep’s clothing? Toxicology Research, 4(3), 563–575. https://doi.org/10.1039/c4tx00110a

Gliga, A. R., Skoglund, S., Odnevall Wallinder, I., Fadeel, B., & Karlsson, H. L. (2014). Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 11(1), 11. https://doi.org/10.1186/1743-8977-11-11

Hamdy, E., Hamada El-Gendi, Abdulaziz Al-Askar, El-Far, A., Przemysław Kowalczewski, Said Behiry, & Abdelkhalek, A. (2024). Copper oxide nanoparticles-mediated Heliotropium bacciferum leaf extract: Antifungal activity and molecular docking assays against strawberry pathogens. Open Chemistry, 22(1). https://doi.org/10.1515/chem-2024-0028

Hussain, A., Yasar, M., Ahmad, G., Ijaz, M., Aziz, A., Nawaz, M. G., Khan, F. A., Iqbal, H., Shakeel, W., Momand, H., Ali, R., Ahmad, S., Shah, H., Nadeem, M., Ahmad, D., Anjum, F., & Faisal, S. (2023). Synthesis, characterization, and applications of iron oxide nanoparticles. International Journal of Health Sciences, 17(4), 3–10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321464/

Jaiswal, A. K., Elad, Y., Graber, E. R., & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 69, 110–118. https://doi.org/10.1016/j.soilbio.2013.10.051

Jannat, M., Kiran, S., Yousaf, S., Gulzar, T., & Iqbal, S. (2022). Potential Antifungal Effects of D. malabarica Assisted Zinc Oxide and Silver Nanoparticles against Sheath Blight Disease of Rhizoctonia solani. Polish Journal of Environmental Studies, 31(5). https://doi.org/10.15244/pjoes/150049

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on Nanoparticles and Nanostructured materials: history, sources, Toxicity and Regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074. https://doi.org/10.3762/bjnano.9.98

Karkee, A., & Mandal, D. L. (2020). Efficacy of Fungicides Against Rhizoctonia solani Inciting Rhizome Rot Diseases on Large Cardamom (Amomum subulatum Roxb.). International Journal of Applied Sciences and Biotechnology, 8(1), 61–64. https://doi.org/10.3126/ijasbt.v8i1.27240

Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043

Khan, M., Ware, P., & Shimpi, N. (2021). Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Applied Sciences, 3(5). https://doi.org/10.1007/s42452-021-04436-4

Kumar, B., Smita, K., Cumbal, L., Debut, A., & Angulo, Y. (2017). Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. Journal of Saudi Chemical Society, 21, S475–S480. https://doi.org/10.1016/j.jscs.2015.01.009

Kumar, P., Nene, A. G., Punia, S., Kumar, M., Abbas, Z., Thakral, F., & Tuli, H. S. (2019). Synthesis, characterization, and antibacterial activity of CuO nanoparticles. International Journal of Applied Pharmaceutics, 12(1), 17–20. https://doi.org/10.22159/ijap.2020v12i1.36271

Kumari, M., Giri, V. P., Pandey, S., Kumar, M., Katiyar, R., Nautiyal, C. S., & Mishra, A. (2019). An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide Biochemistry and Physiology, 157, 45–52. https://doi.org/10.1016/j.pestbp.2019.03.005

Manivannan Rangasamy, Suresh Kumar Gopal, A. Indhumathi, S. Loganathan, S. Manikandan, & R. Naresh. (2023). Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Tecoma Stans. Journal of Pharmaceutical Research International, 35(7), 9–16. https://doi.org/10.9734/jpri/2023/v35i77335

Moliszewska, E., Hendel, P., & Małgorzata Nabrdalik. (2023). Rhizoctonia spp. as beneficial and mycorrhizal fungi. Elsevier EBooks, 213–220. https://doi.org/10.1016/b978-0-323-91734-6.00004-1

Mousa, S., Abdulwahab, J., & Abdulhai, M. (2024). Isolation and Pathogenicity Testing of Potato Varieties’ Susceptibility to the Fungus Rhizoctonia solani Kuhn in Northern Syria. African Journal of Biological Sciences, 6, 1569–1578. https://doi.org/10.33472/AFJBS.6.8.2024.15691578

Razia Sultana Brishti, Md. Ahsan Habib, Mosummath Hosna Ara, Karim, R., Md. Khairul Islam, Jannatul Naime, Hasan, M., & Abu, M. (2024). Green synthesis of ZnO NPs using aqueous extract of Epipremnum aureum leave: Photocatalytic degradation of Congo red. Results in Chemistry, 7, 101441–101441. https://doi.org/10.1016/j.rechem.2024.101441

Renuga, D., Jeyasundari, J., Shakthi Athithan, A. S., & Brightson Arul Jacob, Y. (2020). Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Materials Research Express, 7(4), 045007. https://doi.org/10.1088/2053-1591/ab7b94

Selvi, V. S., Velumani, A., & Banu, N. N. (2019). Synthesis and characterization of copper oxide nanoparticles (CuO NPs) using Mangifera indica leaf extract. Journal of Nanoscience and Technology, 5(4), 784–786. https://doi.org/10.30799/jnst.240.19050411

Sathappan, S., Kirubakaran, N., Gunasekaran, D., Gupta, P., Verma, R. S., & Janarthanan, S. (2021). Green synthesis of zinc oxide nanoparticles (ZnO NPs) using Cissus quadrangularis: Characterization, antimicrobial, and anticancer studies. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 91(2), 289–296. https://doi.org/10.1007/s40011-020-01215-w

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), Article 1485. https://doi.org/10.1007/s42452-019-1485-1

Thu, T., Nguyen Duy Dat, Tam, L.-M., & Nguyen Hoang Phuong. (2022). Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application. Beilstein Journal of Nanotechnology, 13, 1108–1119. https://doi.org/10.3762/bjnano.13.94

Tsror, L. (2010). Biology, Epidemiology and Management of Rhizoctonia solani on Potato. Journal of Phytopathology, 158(10), 649–658. https://doi.org/10.1111/j.1439-0434.2010.01671.x

Tu, C., Hsieh, T., & Chang, Y. (1996). Vegetable diseases incited by Rhizoctonia spp. In Fungal diseases in plants (pp. 369–377). Springer. https://doi.org/10.1007/9789401729017_34

Yassin, M. T., Al-Otibi, F. O., Al-Askar, A. A., & Alharbi, R. I. (2023). Green Synthesis, Characterization, and Antifungal Efficiency of Biogenic Iron Oxide Nanoparticles. Applied Sciences, 13(17), 9942. https://doi.org/10.3390/app13179942plications. Journal of Hazardous Materials Advances, 13, 100401–100401. https://doi.org/10.1016/j.hazadv.2024.100401

Downloads

Published

2024-12-15

How to Cite

Madusanka, H. K. S., Aruggoda, A. G. B., Chathurika, J. A. S., & Weerakoon, S. R. (2024). Evaluation of the Antifungal Effect of Green Synthesized Metal Oxide Nanoparticles Against Plant Pathogenic Rhizoctonia Species. American Journal of Life Science and Innovation, 3(2), 63–72. https://doi.org/10.54536/ajlsi.v3i2.4281